В Инженерно-строительном институте СПбПУ установили фотобиореактор для экологических исследований

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Специалисты Высшей школы гидротехнического и энергетического строительства Инженерно-строительного института в рамках выполнения проекта «Разработка технологий улавливания СО2 из отработанных дымовых газов энергетических и промышленных установок биомассой микроводорослей», поддержанного грантом РНФ, разработали фотобиореактор. Современное оборудование изготовлено компанией «Альготек Грин Технолоджи» и представляет собой многофункциональную установку для выращивания микроводорослей.

Фотобиореактор открывает перед учёными широкие возможности для проведения прикладных экологических исследований, связанных с улавливанием углекислого газа биомассой микроводорослей.

Объём реактора составляет 100 литров — в него загружается смесь микроводорослей, воды и питательной среды. Система оснащена автоматическим контролем подачи углекислого газа, регулировкой уровня pH, освещения и температуры, что позволяет управлять условиями культивирования и моделировать различные сценарии окружающей среды.

В перспективе фотобиореактор будет использоваться для исследований в области биоремедиации, включая возможность очистки дымовых газов на промышленных предприятиях с помощью микроводорослей. Результаты проведённых исследований послужат основой для разработки экологичных технологий снижения углеродного следа и интеграции систем культивирования микроводорослей в производственные процессы.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Петербургские учёные предложили новое противовирусное средство

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Учёные Санкт-Петербургского политехнического университета Петра Великого совместно с коллегами из НИИ гриппа им. А. А. Смородинцева Минздрава РФ в лабораторных условиях получили рекомбинантный интерферон-лямбда, известный как интерферон третьего типа. Он защищает человека от вирусных инфекций и при этом имеет ряд преимуществ перед интерферонами первого и второго типов. Об этом сообщает РИА Новости.

Интерфероны — это белки, которые вырабатываются в ответ на вторжение вирусов и препятствуют их размножению. Интерфероны-лямбда действуют локально, в основном на слизистую оболочку дыхательных путей, не вызывая чрезмерной активации иммунной системы и серьёзных побочных эффектов, характерных для интерферонов-альфа.

По словам специалистов, эксперименты показали эффективность нового препарата не только для профилактики, но и для лечения на ранней стадии заболевания, а также при вторичных инфекциях.

При этом учёные предупреждают, что в острой фазе заболевания интерфероны, в особенности первого типа, следует применять с осторожностью.

Научный коллектив планирует создать препарат в виде назальных капель или спрея.

Подробнее читайте здесь.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

125 политехников получили гранты правительства Санкт-Петербурга

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

В 2025 году количество студентов и аспирантов Политеха, победивших в конкурсе грантов Комитета по науке и высшей школе Санкт-Петербурга, почти удвоилось. В прошлом году их было 73 человека, в этом — 125.

Студенты получат премии правительства города в размере 50 000 рублей, аспиранты — 100 000 рублей. Тематика исследований охватывает пять направлений — это проекты в сфере гуманитарных и технических наук, медицины, естественных и точных дисциплин, а также работы, связанные с культурой и искусством.

Один из победителей конкурса грантов 2025 года — ведущий инженер учебной научно-исследовательской лаборатории «Вычислительная механика» Передовой инженерной школы СПбПУ «Цифровой инжиниринг», аспирант Физико-механического института СПбПУ Михаил Ховайко, представивший инновационный проект по созданию лёгких и надёжных сетчатых конструкций из полимерных композитов для космической и авиационной промышленности.

«Проект основан на исследованиях, проведенных в Передовой инженерной школе СПбПУ „Цифровой инжиниринг“, а также на результатах серии научных и опытно-конструкторских работ в области цифрового моделирования и испытаний композитных материалов, — отмечает автор разработки. — Мы не только доказали техническую осуществимость применения новых технологий в производстве сетчатых конструкций для ракетно-космической техники, но и продемонстрировали их практическую ценность. Внедрение таких решений позволит расширить использование полимерных композитов в высокотехнологичном машиностроении. Победа в конкурсе подтверждает актуальность, новизну и значимость задач, решаемых в рамках моего диссертационного исследования, и открывает новые возможности для его реализации: финансовая поддержка поможет ускорить внедрение разработки в промышленность, а признание на городском уровне усилит интерес со стороны предприятий аэрокосмического сектора».

Аспирант Максим Ларин работает инженером научно-исследовательской лаборатории «Лазерные и аддитивные технологии» ИММиТ. На конкурс он представил проект «Разработка технологии лазерной наплавки для восстановления и продления ресурса изношенных поверхностей крупногабаритного оборудования».

«Получение гранта — это важный шаг для развития моего исследования в области ремонтной лазерной наплавки, — поделился Максим. — Проект направлен на создание эффективной технологии восстановления и продления ресурса изношенных поверхностей крупногабаритного оборудования с использованием мобильного комплекса лазерной наплавки „Кочевник“, в разработке которого я принимал непосредственное участие. Такой подход позволяет проводить восстановление прямо на месте эксплуатации оборудования, сокращая время простоя и повышая эффективность ремонтных работ».

Аспирант Института энергетики Евгений Чесноков выиграл конкурс с проектом «Разработка методики определения длительно допустимой токовой нагрузки и аварийно допустимой токовой нагрузки по кабельным линиям с температурным мониторингом».

«Проект посвящён расчёту длительно допустимых токовых нагрузок для кабельных линий среднего и высокого класса напряжений, — рассказал Евгений. — Приведённая в проекте методика расчёта помогает оптимизировать работу кабельной сети и эффективно передавать электроэнергию конечному потребителю. Помимо длительно допустимой токовой нагрузки, методика позволяет рассчитать аварийно допустимую токовую нагрузку, что даёт возможность эффективно перераспределить нагрузку без вреда для изоляции кабелей. По итогам проекта разработаны два стандарта организации для ПАО „Россети Ленэнерго“».

Выпускник Института энергетики и инженер Высшей школы энергетического машиностроения ИЭ Андрей Широких представил на конкурс проект «Разработка научно-технических основ создания цифрового двойника авиационного двигателя и его системы управления».

«Рад, что проект отметили, победы в таких конкурсах мотивируют работать и развиваться дальше, — говорит Андрей. — На мой взгляд, цифровые двойники — это основа для будущего авиации, тематика, которую нужно развивать, насколько это возможно. Обязательно должен сказать, что проект, над которым я работаю, не случился бы без поддержки Политеха и вклада моих коллег. Во многом работа направлена на формирование материально-технической базы технологии двойников — это экспериментальные стенды. Испытания на таких стендах позволят отработать методики создания цифровых двойников, выполнить верификацию и валидацию заложенных в них математических моделей. Наука не может существовать без эксперимента, поэтому экспериментами я в коллективе единомышленников и занимаюсь. Надеюсь, что результаты моей работы станут одним из кирпичиков надёжного фундамента отечественного авиадвигателестроения».

Кстати, большое интервью с Андреем Широких читайте в ближайших выпусках проекта «Персона».

Маргарита Янчевская в этом году перешла на 2-й курс магистратуры ИПМЭиТ. На конкурс она предложила работу «Многофакторное исследование трансформации восприятия абитуриентами высших учебных заведений с учётом рейтинговых показателей».

«Идея проекта возникла из моего наблюдения за тем, насколько усложнился и стал многогранным процесс выбора вуза для современных абитуриентов, — рассказала Маргарита. — Они учитывают множество факторов — от наличия нужной специальности и перспектив трудоустройства до мнения родителей и атмосферы в вузе. В последние годы особенно возросло влияние субъективных оценок на восприятие качества образования. Меня заинтересовало, как эти субъективные факторы взаимодействуют с другими критериями, влияют ли рейтинги на приоритеты абитуриентов и как абитуриенты интегрируют эту информацию в свою систему выбора. Исследование показало, что выбор вуза для современных абитуриентов — многофакторный процесс. Они оценивают университеты, основываясь не только на академических показателях, но и на социальных факторах. Для успешного позиционирования университета важно найти баланс между этими двумя аспектами. Более того, необходимо учитывать специфику каждого вуза и особенности абитуриентов разных направлений подготовки. Эти выводы позволят разработать более эффективные и адресные информационные стратегии, которые учтут всё многообразие факторов, влияющих на важный выбор в жизни каждого поступающего».

Выпускник программы магистратуры ИСИ «Цифровое строительство зданий и сооружений» Прохор Яковлев в проекте «Параметрическое моделирование конструктивных решений гиперболоидной конструкции» разработал методику оптимизации стальных стержневых конструкций по критерию минимизации металлоёмкости. Отличительной особенностью методики является автоматический сбор климатических нагрузок, а также применение эволюционного алгоритма для нахождения эффективного конструктивного решения. В работе Прохор реализовал методику на стальном гиперболоидном каркасе сооружения маяка. В результате исследования были определены оптимальные по критерию минимизации металлоёмкости параметры гиперболоидной конструкции, с сокращением общей массы в 4,5 раза от изначального варианта. Проведена верификация расчётов с помощью настройки экспорта расчётной схемы в ПК ЛИРА-САПР. Также предложен подход к детализации проектной модели с применением автоматического формирования типовых узлов, что значительно сокращает затраты. Как отмечает Прохор, разработанные алгоритмы являются универсальными и могут быть спроецированы на аналогичные стержневые пространственные конструкции.

Некоторые ребята уже не в первый раз выигрывают гранты КНВШ. Например, аспирант ИЭ Игорь Репин, который представлял проект «Повышение энергетической эффективности тепловых электростанций Санкт-Петербурга с использованием энергосберегающих технологий».

«Я участвовал в конкурсе грантов Санкт-Петербурга второй раз, и второй раз победа, — рассказал Игорь. — Обе работы были связаны с темой будущей диссертации и сделаны на основе магистерского диплома. В проектах я предлагал современные методы повышения эффективности электростанций с использованием тепловых насосов. Первая победа вселила уверенность, поэтому решил участвовать и в этом году. За год добавилось достижений и опыта, сомнений не было, что получится выиграть и сейчас! Очень этому рад, впереди день рождения — сделал себе прекрасный подарок!»

Среди победителей — «золотой» выпускник ИММиТ 2025 года Андрей Клиновицкий с проектом «Разработка робота-консультанта на колёсной базе и голосовым человеко-машинным интерфейсом», Никита Благой с проектом «Модель цифровой трансформации бизнес-процессов предприятий Санкт-Петербурга на основе игровых решений», Лилия Нежинская с проектом «Разработка методики моделирования метаматериалов аддитивного производства с помощью натурных и виртуальных испытаний», Дарья Тутуева с проектом «Оценка экспортно-импортного потенциала взаимодействия Санкт-Петербурга с регионами Индии в сфере машиностроения: технология моделирования», Всеволод Гайдук (проект «Оптимизация параметров роторно-винтового движителя робототехнической платформы»), Анна Ровбо (проект «Разработка технологии производства висмутсодержащих групп марок автоматных сталей для металлургических компаний») и многие другие.

Аспиранты:

Анна Абдрахманова, проект «Аддитивное производство функционально-градиентного полимерного композита для протезирования нижних конечностей»;

Кристина Бондаренко, проект «Методы очистки воды от микропластика»;

Артём Борисов, проект «Влияние содержания TiC на процесс изготовления, микроструктуру, механические и трибологические свойства металломатричных композиционных материалов Inconel 718/TiC, изготовленных с применением аддитивной технологии струйного нанесения связующего»;

Вячеслав Борисов, проект «Функциональная адаптация комплектов дорожно-строительных машин при производстве работ по строительству транспортных сооружений»;

Вячеслав Боровских, проект «Создание и развитие энергетической инфраструктуры Санкт-Петербурга на рубеже XIX — XX вв.: технологии и бизнес»;

Жанна Бурлуцкая, проект «Мультиагентная модель распределения ресурсов в процессе реализации инновационных разработок в сетевых объединениях технологических компаний»;

Кирилл Васильев, проект «Научно-методический аппарат обработки данных мобильного лазерного сканирования для проектирования ремонта автомобильной дороги»;

Дмитрий Вибе, проект «Автоматическая мехатронная система для обнаружения центровочных меток»;

Екатерина Власова, проект «Разработка стандарта системы менеджмента качества к модели автоматизированной системы формирования кросс-функциональной проектной команды на предприятии оборонно-промышленного комплекса»;

Екатерина Волокитина, проект «Разработка технологии получения высокоэнтропийного сплава CoCrFeNiMn, легированного азотом»;

Павел Головкин, проект «Совершенствование функционирования российского рынка облачных инфокоммуникационных услуг»;

Данил Ерутин, проект «Улучшение механических характеристик полиамида-12 за счет формирования природоподобной геликоидальной структуры методом послойного наложения филамента»;

Мария Зайцева, проект «Исследование особенностей формирования структуры и механических свойств ферритно-мартенситной дисперсно-упрочненной оксидами стали при селективном лазерном плавлении»;

Михаил Ивков, проект «Развитие методов обоснования работоспособности системы пассивного отвода тепла от защитной оболочки для ЛАЭС-2 в условиях старения оборудования»;

Тим Исаков, проект «Применение спайковых нейронных сетей и алгоритмов обучения с подкреплением для управления мобильными роботами»;

Владимир Карасёв, проект «Повышение служебных свойств деталей машин из дуплексной стали, микролегированной РЗМ, за счёт управления фазовым составом и структурной однородностью отливок»;

Вадим Коёкин, проект «Математическое моделирование перспективных устройств по преобразованию тепловой энергии»;

Павел Козинец, проект «Методика расчета спектров ответа на отметках установки оборудования ГЭС»;

Дмитрий Кравцов, проект «Комбинированные испытания для определения механических свойств многослойных тонколистовых металлов с использованием нестандартизированных образцов»;

Вадим Крафт, проект «Получение и исследование полиимидных нетканых материалов со сверхнизкой диэлектрической проницаемостью для задач микроэлектроники»;

Олег Кротов, проект «Разработка научно-методического аппарата по проектированию, строительству, эксплуатации мостовых опор с применением строительной 3D-печати»;

Юрий Кузнецов, проект «Оптимизация параметров спринклерных оросителей тонкораспыленной воды»;

Юлия Лямина, проект «Разработка спектрофотометрической методики диагностики эндотелиальной дисфункции»;

Алексей Мельник, проект «Инструментарий оценки цифрового потенциала инновационно-активных промышленных экосистем в условиях зелёной экономики (на примере промышленности Санкт-Петербурга)»;

Денис Михайлов, проект «Исследование влияния погрешностей в определении величины погонных параметров воздушной ЛЭП на результаты расчётов установившихся режимов и токов короткого замыкания»;

Павел Михайлов, проект «Методика оценки цифровой зрелости для промышленных предприятий и экосистем Санкт-Петербурга»;

Сухайр Мсукар, проект «Разработка нейронной сети для отслеживания негативных изменений в сердечно-сосудистой системе человека на основе сигналов пульсовых волн»;

Алиса Мустафина, проект «Разработка индекса цифровой инклюзивности туристских онлайн-сервисов Санкт-Петербурга на основе нечётких множеств»;

Даниил Проводин, проект «Мобильный дифференциальный рефрактометр с опцией изменения дискретности шкалы измерения»;

Юлия Седова, проект «Обоснование новой методики механических испытаний горячекатаных толстостенных труб для энергоагрегатов»;

Евгений Танин, проект «Отраслевые детерминанты экономического развития территорий агломерации Санкт-Петербурга»;

Василий Тверской, проект «Вторичная переработка кофейных отходов и их использование для производства пищевых продуктов в рамках экономики замкнутого цикла»;

Ратмир Устименко, проект «Светопреобразующие и светоизлучающие ИК-приборы на нитевидных нанокристаллах InAsP и InAsP-ядро/CaF2-оболочка»;

Татьяна Фёдорова, проект «Численное исследование процесса реконверсии обедненного гексафторида урана при его взаимодействии с водородсодержащими веществами и кислородом в режиме горения для разработки методологии масштабирования реактора типа туннельной горелки».

Олег Цыкунов, проект «Разработка математической модели фильтрации и гибридного алгоритма оптимизации для обработки результатов потоковых экспериментов»;

Валентина Челышева, проект «Снижение негативного воздействия на водные объекты сорбентами хитозан-оксид графена»;

Сергей Шавуров, проект «Разработка виртуальной лаборатории безопасности жизнедеятельности»;

Полина Шинкевич, проект «Снижение антропогенного воздействия на окружающую среду на основе использования микроводорослей»;

Дарья Шудегова, проект «Использование нейросетей в обучении чтению на английском языке в многоуровневой образовательной системе Санкт-Петербурга».

Студенты:

Маргарита Абсалямова, проект «Аутоиммунная компонента патогенеза болезни Паркинсона: роль аутоантител против нейротензина»;

Кирилл Алесич, проект «Гибридные конструктивные схемы как способ оптимизации стоимости и сроков строительства жилых зданий»;

Максим Антоненко, проект «Система дистанционного биомониторинга частоты сердечных сокращений на основе фотоплетизмографии»;

Максим Антонов, проект «Оценка теплового воздействия горения кабельных линий на строительные конструкции здания отстойно-ремонтного корпуса электродепо метрополитена»;

Александра Антонова, проект «Применение цифровых двойников в работе учреждений социального обеспечения»;

Эльдар Асадуллаев, проект «Совершенствование государственной политики в сфере формирования комфортной городской среды»;

Игнат Баянов, проект «Применение бессеточных методов для решения задач моделирования аварийных ситуаций»;

Дмитрий Болдарев, проект «Рубидиевый квантовый стандарт частоты с использованием преобразователя частоты на основе волноводного тракта»;

Святослав Болобан, проект «Податливые конструкции защитных сооружений на основе материалов с ауксетической структурой»;

Анна Гайна, проект «Использование ПИД-регулятора для температурного контроля в процессе лазерной закалки стали»;

Глеб Голиков, проект «Автоматизированный биржевой бот для алгоритмической торговли цифровыми активами в контексте обеспечения информационной безопасности на предприятиях Санкт-Петербурга: проблемы и решения»;

Наталия Грозова, проект «Разработка радиационно стойких полимерных композиционных материалов для защиты солнечных элементов»;

Дарья Давыдова, проект «Новый оптический датчик тканевой оксиметрии для контроля функционального состояния и аэробной производительности человека»;

Дарья Денисенко, проект «Совершенствование системы организации обучения по охране труда посредством разработки программного продукта»;

Илья Денисов, проект «Совершенствование методики оценки вероятности воспламенения облака топливно-воздушной смеси в условиях городской застройки»;

Максим Дергачев, проект «Разработка модели формирования и алгоритмов оптимизации состава команды IT-проекта»;

Ксения Долгова, проект «Анализ и обоснование развития зон городской рекреации малых городов (на примере города Кудрово Ленинградской области)»;

Майя Егорова, проект «Зелёное финансирование как инструмент обеспечения устойчивого развития в странах-членах БРИКС»;

Екатерина Есипова, проект «Моделирование работы международных организаций как важный аспект в подготовке студентов-международников»;

Никита Избяков, проект «Модернизация экспериментального стенда и проведение испытаний для валидации расчётов радиально-осевой турбины, работающей на сверхкритическом диоксиде углерода»;

Полина Жиракова, проект «Интеллектуальная система эвакуации на морских судах с использованием алгоритмов обучения с подкреплением и моделирования опасных факторов пожара»;

Тимофей Жоржиков, проект «Правовое регулирование цифровых технологий»;

Даниил Журавлёв, проект «Оценка использования составов асфальтобетонных смесей с применением полимерных модификаторов в композиции с малеиновым ангидридом»;

Серафим Загородний, проект «Методика формирования корпоративной системы классификатора строительной информации»;

Александр Зелёный, проект «Оптимизация алгоритмов информационного поиска для образовательных текстовых корпусов в контексте систем RAG»;

Елизавета Иванова, проект воздухоопорного сооружения для нестандартного пятна застройки;

Шарип Исаев, проект «Cовременные подходы к проектированию архитектурного освещения с помощью искусственного интеллекта»;

Екатерина Исупова, проект «Многофункциональный блок контроля и управления температурой для газовой ячейки квантового дискриминатора рубидиевого стандарта частоты»;

Данила Караулов, проект «Расширение фундаментальной базы для создания фотоприёмников и источников инфракрасного излучения на основе полупроводниковых квантовых точек GeSi/Si»;

Екатерина Киргетова, проект «Энигматический жанр русской и английской поэзии как средство развития этнокультурных представлений студентов (сравнительно-сопоставительный анализ)»;

Илья Клепов, проект «Разработка алгоритмической системы поддержки принятия инвестиционных решений на фондовом рынке»;

Алексей Кожусь, проект «Сценарии архитектурно-ландшафтной организации общественных пространств малоэтажной исторической застройки на территории Нарвской заставы в Санкт-Петербурге»;

Давид Кокая, проект «Методика экологической оценки жизненного цикла зданий с использованием технологий информационного моделирования»;

Екатерина Кондаурова, проект «Основы адаптации и формирования культурной грамотности иностранных студентов, обучающихся в Санкт-Петербурге по направлению „Зарубежное регионоведение“ (в рамках дисциплины „Иностранный язык“)»;

Полина Корниенко, проект «Люминесцентная связь в многопереходных солнечных элементах»;

Лидия Кудрявцева, проект «Разработка методики оценки частот реализации аварии для оборудования площадочных объектов магистрального трубопроводного транспорта»;

Денис Кустов, проект «Совершенствование механизмов государственного управления в сфере городского общественного транспорта (на примере Санкт-Петербурга)»;

Валерия Лапшина, проект «Методика автоматизированного проектирования строительного генерального плана»;

Анна Максимова, проект «Повышение эффективности деятельности сети МФЦ Ленинградской области: совершенствование системы управления персоналом»;

Марина Малашенко, проект «Моделирование показателей автотранспортной безопасности регионов РФ»;

Виктор Матвеев, проект «Разработка системы технического зрения для определения препятствий и опорной поверхности перед мобильным роботом с использованием нейронной сети»;

Алексей Мельников, проект «Исследование особенностей формоизменения кольцевых силовых элементов из сплава TiNi после активной деформации»;

Валерия Мицук, проект «Ремонт асфальтобетонных покрытий городских дорог в условиях плотных транспортных потоков»;

Михаил Мурашко, проект «Геймификация как технология преодоления психолого-педагогических барьеров при изучении иностранных языков в цифровой среде»;

Ника Николаеня, проект «Разработка молодёжно-ориентированных ярмарочно-выставочных мероприятий в г. Санкт-Петербург»;

Илья Норватов, проект «Поляризационно-чувствительный электрооптический затвор для терагерцового спектрального диапазона»;

Елена Обухова, прогноз «Прогнозирование цен акций VK методами машинного обучения: разработка модели инвестиционного анализа для Санкт-Петербурга»;

Денис Пельменев, проект «Исследование алгоритмов обхода препятствий при управлении движением подводного биоподобного туниморфного робота»;

Анна Петрова, проект «Разработка комплекса мероприятий по развитию инвестиционной привлекательности проекта девелопмента на примере реконструкции объекта недвижимости»;

Прохор Поляков, проект «Организация системы платёжного взаимодействия между Российской Федерацией и Китайской Народной Республикой на основе технологии пула ликвидности Рубль-Юань»;

Елена Порфирьева, проект «Новый неинвазивный метод определения коэффициентов в технологии esCCO для достоверной диагностики сердечного выброса пациента в реальном времени»;

Валерия Рекина, проект «Универсальный прототип мобильной версии веб-сайта для многопрофильных медицинских клиник»;

Иван Рудь, проект «Разработка метода диагностики качества полупроводниковых тонкоплёночных фотовольтаических структур для одежды и предметов снаряжения»;

Захар Саранин, проект «Статистический анализ розничных цен на продукты нефтепереработки региональных АЗС г. Санкт-Петербурга с использованием информационной системы динамического парсинга данных»;

Михаил Сафошкин, проект «Влияние типов аутригерного этажа на напряжённо-деформированное состояние каркаса высотного здания при расчёте на прогрессирующее обрушение»;

Елизавета Свирина, проект «Сравнительный анализ региональных различий в формировании профессиональных ожиданий студентов»;

Ксения Селякова, проект «Оценка точности гидравлических расчётов систем водоснабжения с использованием BIM-технологий»;

Олег Сергеев, проект «Разработка визуальных моделей для оптимизации внедрения системы экологического менеджмента на опасных производственных объектах»;

Евгений Середин, проект «Моделирование динамики выбросов CO2 в регионах Российской Федерации»;

Арсений Служаев, проект «Мобильные транспортные роботы: влияние нелинейности коэффициентов упругости на конструкцию; децентрализованная система управления; возможность применения в Арктическом регионе»;

Олеся Старченкова, проект «Анализ и кластеризация недостоверной новостной информации как инструмент обеспечения информационной безопасности региона»;

Ярослава Солнцева, проект «Влияние учёта работы комбинированной балки на размеры сечения элементов каркаса»;

Александр Суббота, проект «Параметрическое моделирование покрытий гауссовой кривизны и уточнение характера ветрового воздействия на них»;

Ольга Сучкова, проект «Исследование процессов переработки прокатной окалины»;

Полина Филатова, проект «Анализ российско-китайского сотрудничества в Арктике: асимметрия интересов и перспективы устойчивого партнёрства»;

Адель Халиуллин, проект «Математическая модель формирования портфеля инновационных проектов»;

Максим Чемусов, проект «Разработка модуля выявления правонарушений водителей электросамокатов с использованием технологий компьютерного зрения»;

Дарья Чернуха, проект «Применение риск-ориентированного подхода при эксплуатации ГТС»;

Дарья Шаламова, проект «Применение лабораторных работ по физике на занятиях по русскому языку как иностранному на подготовительном факультете»;

Алексей Шихарев, проект «Разработка подхода к оценке эффективности региональных систем обращения с отходами потребления в России»;

Олеся Шошева, проект «Предоперационное планирование аппаратурно-хирургического расширения верхней челюсти на основе конечно-элементного моделирования»;

Анастасия Юничева, проект «Цифровизация процессов возделывания сельскохозяйственных культур за счёт внедрения интеллектуальной информационной системы с применением БПЛА»,

Диана Якименко, проект «Формирование личного бренда преподавателя с применением технологий искусственного интеллекта в условиях цифровой трансформации образовательной среды».

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Политех выиграл грант на совместный проект с Технологическим университетом Гаваны

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Проект СПбПУ «Разработка модели принятия решений для оптимального функционирования электроэнергетической системы в условиях воздействия экстремальных погодных явлений» под руководством профессора Высшей школы техносферной безопасности Инженерно-строительного института Вячеслава Бурлова получил грант Министерства науки и высшего образования РФ на проведение научных исследований с партнёрами из стран Латинской Америки и Карибского бассейна.

Политех будет работать над проектом вместе с Технологическим университетом Гаваны Хосе Антонио Эчеверриа (CUJAE) и российским промышленным партнёром — проектно-конструкторским бюро «РИО».

Учёные проанализируют научно-техническое состояние системы обеспечения энергетической безопасности Республики Куба, чтобы установить связь перебоев электроснабжения с техническим состоянием оборудования и погодными условиями. По результатам анализа будет составлен перечень угроз нарушения электроснабжения региона, и на его основе разработаны модели процессов обеспечения безопасности и целевого процесса электроснабжения. На их базе учёные разработают инновационную интеллектуальную модель принятия решений, обеспечивающую надёжное и устойчивое функционирование электроэнергетических систем в экстремальных климатических условиях: во время ураганов и тайфунов, в сильный мороз и жару.

В отличие от существующей практики разработки моделей энергетической безопасности на основе анализа, построенного на оценке произошедших аварий, сравнении объектов и прогнозировании возможных проблем в процессе их функционирования, естественно-научный подход к управлению системой электроснабжения региона позволит формировать процессы с наперёд заданными свойствами.

Целесообразность проведения прикладных исследований совместно с Технологическим университетом Гаваны обусловлена тем, что задача обеспечения энергетической безопасности является сегодня для Кубы одной из первостепенных. В феврале, марте, октябре и декабре 2024 года в стране произошла серия перебоев с электроснабжением. Для Российской Федерации эта проблема также актуальна. Например, 16 июля 2024 года на юге России и Северном Кавказе случилось масштабное отключение электроэнергии, причиной которого стали повышенные нагрузки на энергосистему из-за жары и сбой работы генерирующего оборудования на Ростовской АЭС.

Совместная разработка станет шагом к развитию «умных» энергосетей, способных сохранить стабильность электроснабжения и повысить безопасность потребителей. В проекте сделан акцент на важности перехода к передовым технологиям проектирования и создания высокотехнологичной продукции, основанным на применении интеллектуальных производственных решений, роботизированных и высокопроизводительных вычислительных систем, новых материалов и химических соединений, результатов обработки больших объёмов данных, технологий машинного обучения и искусственного интеллекта.

Этот проект — яркий пример того, как современная наука и передовые технологии, в частности искусственный интеллект, могут решать глобальные вызовы. Наше сотрудничество с CUJAE подчёркивает важность международной кооперации в создании инновационных решений, способных изменить будущее энергетики в России, на Кубе и за их пределами, — считает проректор по научной работе СПбПУ Юрий Фомин.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Учёные ИСИ исследуют оптические свойства речной воды

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Учёные Инженерно-строительного института ведут исследование, направленное на изучение характеристик воды из реки Невы, важных для онлайн-контроля её качества. Работа над проектом ведётся под руководством доцента Высшей школы гидротехнического и энергетического строительства Инженерно-строительного института Марии Андриановой. В состав исследовательской группы также вошли старший преподаватель ВШГиЭС ИСИ Екатерина Чабина и аспирант Бенджами Иштвах.

Цель исследования — анализ вариабельности оптической плотности воды в источниках питьевого водоснабжения, что имеет ключевое значение для совершенствования систем автоматического мониторинга (САМ) загрязняющих веществ. Современные технологии онлайн-контроля позволяют значительно ускорить процесс анализа качества воды, хотя их точность может быть ниже лабораторных методов. Тем не менее, оперативное получение данных критически важно для эффективного управления технологическими процессами очистки воды. В 2021 году был принят ГОСТ, регламентирующий использование САМ, который подчёркивает необходимость учёта сезонных и погодных явлений при мониторинге водных объектов.

По словам руководителя проекта Марии Андриановой, предварительные данные демонстрируют значительную сезонную вариабельность оптических коэффициентов в ультрафиолетовом диапазоне, превышающую возможную погрешность измерений. Это подтверждает актуальность исследования, направленного на оценку масштабов данной вариабельности и определение факторов, влияющих на её динамику. Учитывая изменения климатических условий и трансформацию канализационной системы стоков города за последние десятилетия, проект приобретает особую значимость для современной экологии и водоочистки.

Высшая школа гидротехнического и энергетического строительства Инженерно-строительного института располагает современной приборной базой для анализа основных характеристик воды, включая определение общего органического углерода, отдельных ионов, спектров оптической плотности и флуоресценции в ультрафиолетовом и видимом диапазонах. Учёные планируют провести детальный анализ проб воды, отобранных из Невы и её притоков при различных погодных условиях: летом и зимой, во время весеннего паводка и осенних ливней. Основная задача исследования — создание базы данных по спектральным и химическим показателям воды для последующего выявления закономерностей.

Для обеспечения успешной реализации проекта требуется участие студентов-магистрантов. В связи с этим приглашаем обучающихся Инженерно-строительного института принять активное участие в работе над проектом, а также выполнить выпускные квалификационные работы по теме исследования, — поделилась старший преподаватель ВШГиЭС Екатерина Чабина.

Надеемся, что результаты исследований найдут применение на предприятиях Водоканала Санкт-Петербурга, — отметила руководитель проекта Мария Андрианова.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Политех представил инновационные разработки представителям федеральных органов власти

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

4 августа Политех с рабочим визитом посетила представительная делегация во главе с заместителем руководителя Администрации Президента Российской Федерации Максимом Орешкиным, заместителем министра промышленности и торговли РФ Михаилом Ивановым, заместителем министра науки и высшего образования РФ Дмитрием Афанасьевым и заместителем министра цифрового развития, связи и массовых коммуникаций РФ Сергеем Кучушевым.

В составе делегации были также председатель комитета Государственной Думы по защите конкуренции Валерий Гартунг, вице-губернатор Санкт-Петербурга Владимир Княгинин, врио председателя Комитета по промышленной политике, инновациям и торговле Санкт-Петербурга Александр Ситов, заместитель председателя Комитета по промышленной политике, инновациям и торговле Санкт-Петербурга Алексей Яковлев, руководители департаментов министерств.

Гостей встречали ректор СПбПУ Андрей Рудской, проректоры Виталий Сергеев, Людмила Панкова, Юрий Фомин, Дмитрий Тихонов, директор Института машиностроения, материалов и транспорта Анатолий Попович, учёный секретарь Дмитрий Карпов, руководители и сотрудники научных центров и лабораторий.

Для нас большая честь принимать столь представительную делегацию, заинтересованную в знакомстве с передовыми разработками наших учёных, — отметил ректор СПбПУ Андрей Рудской. — Сегодня наш университет является одним из ведущих научно-образовательных центров, где рождаются инновационные идеи и воплощаются в жизнь самые смелые инженерные проекты. Мы гордимся достижениями наших исследователей и с радостью делимся накопленным опытом. Уверен, что Ваш визит откроет новые перспективы для наших учёных, для взаимодействия вуза с индустриальным сектором и различными отраслями экономики. Мы готовы делиться своими наработками и открыты к диалогу, который, несомненно, будет способствовать развитию науки и технологическому лидерству нашей страны.

Во время визита представители власти узнали о новейших достижениях научных коллективов Политеха, увидели разработанное в вузе уникальное оборудование и изготовленные на нём изделия, в том числе по заказам индустриальных партнёров.

Знакомство началось с посещения лабораторий и центров, занимающихся аддитивным производством. В Лаборатории лёгких материалов и конструкций членам делегации рассказали об аддитивном электродуговом выращивании (WAAM), показали первый в РФ роботизированный WAAM-принтер и другие установки. Также была представлена технология изготовления деталей методом сварки трением с перемешиванием на роботизированном комплексе собственного производства.

Сотрудники Научно-исследовательской лаборатории «Лазерные и аддитивные технологии» ИММиТ представили мобильный комплекс лазерной наплавки «Кочевник». Это уникальная для России разработка, созданная на единой платформе с применением робота, порошкового питателя и высокоточного лазера. Комплекс отличается компактностью и мобильностью: его можно легко транспортировать для выполнения выездных работ по восстановлению крупногабаритных и специализированных изделий. С его помощью уже проведено восстановление ключевых элементов газотурбинных двигателей как российского, так и зарубежного производства.

Ещё одной разработкой, вызвавшей интерес, стал комплекс лазерной сварки топливных элементов водородных источников энергии. Это единственное в стране оборудование, на котором было изготовлено более 700 топливных элементов водородного источника энергии, 350 из которых проходят ходовые испытания на борту судна «Экобалт».

Также гостям показали чашки тазобедренного сустава, созданные комбинированным методом, с использованием технологии нанесения пористого покрытия на заготовку. Сейчас в лаборатории создаётся производственный комплекс, который позволит серийно выпускать до 40 тысяч таких изделий в год.

Для нас важно показывать разработки вживую — не на слайдах, а в действии. Только так можно по-настоящему передать масштаб и потенциал этих технологий, — рассказал директор Института машиностроения, материалов и транспорта Анатолий Попович. — Когда гости видят примеры работ, созданные руками инженеров и учёных, это превращается из абстрактной инновации в предмет реального интереса и дальнейшей поддержки.

Также гости узнали, что Политех стал первым университетом, где появился участок серийного выпуска деталей газотурбинного двигателя: сопловых аппаратов и форсунок. Кроме того, в СПбПУ работает первое в России и Западной Европе оборудование для высокотемпературной 3D-печати отечественного производства, которое позволяет выращивать изделия с направленной структурой.

В холле Научно-исследовательского корпуса «Технополис Политех» делегации представили научно-технические разработки молодых учёных и инженеров, в том числе студентов университета.

Достижения Передовой инженерной школы СПбПУ «Цифровой инжиниринг» представил заместитель руководителя Инжинирингового центра (CompMechLab®) СПбПУ Николай Ефимов-Сойни. Он рассказал об уникальной российской разработке, сфокусированной на обеспечении проектирования и производства в кратчайшие сроки глобально конкурентоспособной высокотехнологичной продукции в различных отраслях и на новых рынках, — Цифровой платформе CML-Bench®. Николай Константинович подчеркнул, что на Цифровой платформе CML-Bench® реализованы десятки прорывных проектов по разработке цифровых двойников изделий для высокотехнологичных отраслей, включая двигателестроение, авиастроение, атомную энергетику, нефтегазовую отрасль, автомобилестроение, судостроение, кораблестроение и медицину, в соответствии с национальным стандартом Российской Федерации — ГОСТ Р 57700.37–2021 «Компьютерные модели и моделирование. ЦИФРОВЫЕ ДВОЙНИКИ ИЗДЕЛИЙ. Общие положения».

В соответствии с актуальными потребностями промышленных предприятий и сектора беспилотных авиационных систем ПИШ СПбПУ проводит адаптацию Цифровой платформы разработки и применения цифровых двойников CML-Bench® под отрасль БАС. Цифровая платформа CML-Bench.БАСТМ была дополнена системой построения виртуальных испытательных стендов и полигонов для проведения цифровых испытаний как отдельных элементов БАС, так и воздушного судна в целом. Кроме того, платформа включает модуль «Цифровая сертификация», который позволяет проходить натурные сертификационные испытания с первого раза за счёт проведения большого количества предварительных цифровых испытаний. Это сокращает себестоимость разработки, сроки и стоимость сертификационных работ, а также ускоряет вывод продукции на рынок, — отметил заместитель руководителя опытно-конструкторского бюро Передовой инженерной школы СПбПУ «Цифровой инжиниринг» Александр Гордеев.

На стенде гости увидели опытный образец беспилотного летательного аппарата (БПЛА) «Снегирь—1.5», созданный в 2024 году на базе Цифровой платформы CML-Bench® для проведения лётных испытаний, отработки системы управления, валидации и верификации расчётных моделей. А Николай Ефимов-Сойни презентовал инновационные решения, представляющие особый интерес для разработки конкурентоспособных по техническим характеристикам БПЛА, — демонстраторы технологий оверпринтинга, индукционной сварки термопластичных композиционных материалов и автоматизированной выкладки термопластичных однонаправленных препрегов.

Среди разработок ПИШ СПбПУ «Цифровой инжиниринг» также присутствовал натурный образец антидебризного фильтра — высокотехнологичное решение, созданное в интересах АО «ТВЭЛ» (входит в состав Топливного дивизиона Госкорпорации «Росатом») и обеспечивающее бесперебойную работу оборудования в экстремальных условиях эксплуатации.

Технологии оптимизации позволили сгенерировать конструкцию с большим числом «игл», формирующих оптимальную внутреннюю микроструктуру каналов для интенсификации теплообмена. При этом конструкция обеспечивает жёсткость и динамическую прочность при ударном воздействии посторонних предметов массой до 200 грамм, летящих со скоростью до 6 метров в секунду, — подчеркнул Николай Ефимов-Сойни. — В результате за счёт применения методов цифрового проектирования и аддитивного производства эффективность фильтрации повышена в 10 раз.

Напомним, что на Международной промышленной выставке ИННОПРОМ-2025 специалисты Передовой инженерной школы СПбПУ «Цифровой инжиниринг» представили макет БПЛА «Снегирь—2», опытный образец которого будет создан уже в августе 2025 года.

Центр технологических проектов продемонстрировал безэкипажный катер «Морена» для проведения гидрографических и поисковых работ и телеуправляемый необитаемый подводный аппарат Спрут-М | Octopus-M.

Живой интерес гостей вызвали разработки студентов. Так, студенческое объединение Polytech Voltage Machine представило пожарного робота на гусеничном ходу «Фрезе» и беспилотный грузовой автомобиль.

А ребята из Студенческого конструкторского бюро показали первую модификацию боевого робота Медоеда и поделились, что в своей третьей версии он выиграл бронзу на международном чемпионате «Битва роботов» в 2024 году.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Беспилотный транспорт будущего: Политех получил грант на совместные исследования с Китаем

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Санкт-Петербургский политехнический университет Петра Великого выиграл грант Министерства науки и высшего образования РФ на проведение научных исследований совместно с Хуачжунским университетом науки и технологий (Ухань, Китай).

Руководит проектом «Перспективные технологии интерактивного мультиагентного взаимодействия и управления для интеллектуальной киберфизической системы в условиях неопределённости для транспортных систем» директор Научно-технологического комплекса «Математическое моделирование и интеллектуальные системы управления» Вячеслав Шкодырев.

Основная цель проекта — повышение эффективности группового управления взаимодействием распределённых промышленных беспилотных транспортных средств, а также их автономной работой с помощью новых методов и моделей многоцелевой оптимизации на основе концепции интеллектуализации киберфизических систем с архитектурой взаимодействующих когнитивно—обучающихся агентов для достижения общей стратегической цели управления.

По мере развития технологий применение интеллектуальных киберфизических систем становится всё более распространённым в таких отраслях, как «умный» транспорт, промышленная автоматизация, производственная логистика и др. Однако в сложных и неизвестных условиях эти системы сталкиваются с рядом ограничений, включая недостаточность автономного интеллекта, несбалансированность распределения задач, низкую производительность совместной работы и ограниченные способности принятия рациональных решений. Учёные будут работать над решением этих и ряда других проблем, чтобы обеспечить технологическую поддержку эффективной работы интеллектуальных киберфизических систем.

Планируется использовать преимущества двух университетов в исследованиях интерактивных технологий многокритериального поиска и управления, в частности в исследованиях работы интеллектуальных киберфизических систем в условиях неопределённости. Одна их задач — оптимизировать большие языковые модели с помощью данных, полученных из совместно разработанных адекватных имитационных моделей, в сочетании с реальными данными. Это должно обеспечить генерацию эффективных разложений на подзадачи и более точных схем распределения сложных задач, что вместе с когнитивными методами управления приведёт к формированию безопасных и эффективных схем автономного планирования и управления при выполнении множества задач.

Это важно для интеллектуального развития систем управления транспортными средствами в производственных и других условиях. Практическая значимость проекта заключается также в том, что его результаты могут быть использованы не только в промышленности, но и для обеспечения общественной безопасности и при ликвидации последствий стихийных бедствий.

Проект рассчитан на 2,5 года. Учёные планируют объединить свои знания в области искусственного интеллекта и управления для создания инновационных решений в сфере беспилотного транспорта.

Этот грант — важная победа, которая открывает новые возможности для международной коллаборации. Реализация проекта позволит объединить передовые научные подходы двух стран для разработки инновационных решений в сфере управления промышленными беспилотными транспортными комплексами, — прокомментировал проректор по научной работе Юрий Фомин.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

В Политехе предложили использовать в строительстве текстильно-армированный бетон с предварительным напряжением

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Группа учёных Инженерно-строительного института СПбПУ под руководством доцента Высшей школы гидротехнического и энергетического строительства Олега Столярова продолжает разработку облегчённых тонкостенных строительных конструкций из текстильно-армированного бетона с предварительным напряжением. В 2024 году проект получил грантовую поддержку Российского научного фонда, что позволило расширить возможности для проведения экспериментов и анализа данных.

В состав исследовательской группы входят доценты Павел Мостовых и Татьяна Коряковцева, а также аспирант и ассистент Анна Донцова.

Текстильно-армированный бетон представляет собой сочетание текстильных армирующих сеток и мелкозернистого бетона. Преимущества этих элементов — отсутствие коррозии, меньший вес и возможность создания сложных форм. За последние два десятилетия этот материал занял свою нишу в строительстве и применяется для ограждающих конструкций, покрытий, элементов городского хозяйства и малых архитектурных форм.

Цель проекта заключается в увеличении потенциала тонкостенных конструкций с волокнистым армированием за счёт предварительного напряжения арматуры. Напряжённый бетон позволяет уменьшить негативный эффект от неудовлетворительных свойств бетона на растяжение, повысить жёсткость конструкции, снизить её деформации, увеличить сопротивление образованию трещин и ограничить их раскрытие. Конструкции с предварительно напряжённой стальной арматурой обладают значительными преимуществами перед ненапряжёнными аналогами — меньшими прогибами и повышенной стойкостью к трещинообразованию. Подобный принцип может быть успешно реализован и в волокнистых композитах, что открывает новые перспективы для применения напряжённой текстильной арматуры в строительстве.

Результаты исследований показали, что предварительное напряжение существенно влияет на механические характеристики бетонных композитов.

Тонкостенные конструкции из текстильно-армированного бетона — это революция в создании устойчивых, лёгких и смелых архитектурных решений, — считает руководитель проекта Олег Столяров.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

СПбПУ получил грант на создание инжинирингового центра

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

Санкт-Петербургский политехнический университет Петра Великого стал победителем конкурсного отбора Минобрнауки РФ на создание инжинирингового центра новых материалов, сварочных и аддитивных технологий для малотоннажного производства наукоёмкой продукции в энергетическом машиностроении.

Финансирование будет предоставлено из федерального бюджета РФ в рамках программы поддержки обновления материально-технической базы организаций, выполняющих научные исследования и разработки.

Политех уверенно входит в топ-10 лидеров среди университетов РФ по объёму выполняемых прикладных научных исследований и разработок. Сегодня в экосистеме университета более 70 исследовательских и научно-производственных лабораторий и более 30 научно-образовательных центров в кооперации с индустриальными партнёрами. Среди самых важных ресурсов можно выделить центр аддитивных технологий, суперкомпьютерный центр, академические и коммерческие лицензии на программное обеспечение мирового уровня и современное инженерное оборудование. Создание инжинирингового центра будет способствовать консолидации компетенций Политеха за счёт привлечения квалифицированных научных работников и инженерно-технического персонала, а совокупность имеющегося и закупаемого научно-производственного оборудования позволит оказывать широкий спектр инжиниринговых услуг реальному сектору экономики.

Инжиниринговый центр будет создан на базе Института машиностроения, материалов и транспорта СПбПУ. Директор ИММиТ и руководитель проекта Анатолий Попович отметил, что основными задачами центра станут оказание инжиниринговых и исследовательских услуг, выполнение опытно-конструкторских и технологических работ по заказам индустриальных партнёров, а также формирование портфеля заказов в режиме «одного окна» и их выполнения для обеспечения полной технологической цепочки с реальным сектором экономики.

Эта победа — признание потенциала университета и стимул реализовать передовые решения в приоритетных для страны отраслях. Мы уверены, что проект поможет вывести нашу исследовательскую и инжиниринговую базу на новый уровень и обеспечит фундамент для дальнейших технологических достижений, — прокомментировал проректор по научной работе СПбПУ Юрий Фомин.

Проект будет реализован в течение 2025–2028 годов, общее финансирование составит 250 миллионов рублей.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.

Старт с Восточного: российские учёные получили новый инструмент для изучения ионосферы

Источник: Санкт-Петербургский политехнический университет Петра Великого –

Важный отказ от ответственности находится в нижней части этой статьи.

25 июля, в 08:54 по московскому времени, с космодрома Восточный была запущена ракета-носитель «Союз-2.1б» с разгонным блоком «Фрегат», который доставил на расчётные орбиты два гелиогеофизических космических аппарата «Ионосфера-М» № 3 и № 4, а также группу из 18 малых космических спутников.

Запуск спутников серии «Ионосфера-М» завершил формирование группировки из четырёх аппаратов космического комплекса «Ионозонд», который будет заниматься мониторингом геофизической обстановки для проведения фундаментальных научных исследований и решения прикладных задач.

Комплекс создан в интересах Российской академии наук и Федеральной службы России по гидрометеорологии и мониторингу окружающей среды. Спутники «Ионосфера-М» предназначены для комплексного изучения верхних слоев атмосферы Земли. Они будут наблюдать за различными физическими процессами в ионосфере, включая природные и техногенные воздействия, изменения электромагнитных полей, состав атмосферы и распределение озона. Полученные данные будет использовать Росгидромет в сочетании с наземными наблюдениями. Российская академия наук планирует проводить наземно-космические эксперименты для исследования реакции ионосферы на природные явления, такие как ураганы и извержения вулканов.

Также на орбиту выведены 18 малых спутников. Девять из них созданы компанией «Геоскан» и будут заниматься фотосъёмкой Земли, отслеживанием движения морских и воздушных судов, исследованием ближнего космоса и многим другим. Часть аппаратов предназначена для образовательных целей.

Советник генерального директора Фонда содействия инновациям Иван Бортник высоко оценил значение сегодняшнего запуска: «Это большое достижение Роскосмоса — завершение формирования группы спутников „Ионосфера-М“ для проведения исследований нашими учёными, представителями фундаментальной науки. Также в этом запуске много аппаратов частных спутникостроительных компаний. Один из аппаратов компании „Геоскан“ входит в проект Space Pi, это важно для Фонда содействия инновациям и для Политеха как родоначальника и лидера проекта. Это первый из серии спутников, с помощью которых школьники смогут заниматься охотой за сверхновыми. Мы как Фонд содействия инновациям провели конкурс и определили победителей, которые начнут изготавливать такие аппараты, надеюсь, что в следующем году они полетят».

По словам Ивана Бортника, наноспутник «239Алфёров» (239Alferov) Президентского физико-математического лицея № 239 и Лицея «Физико-техническая школа имени Ж. И. Алфёрова» откроет новое направление проекта Space Pi — запуск целевых аппаратов. Это первый из серии спутников, оснащённых датчиками рентгеновского излучения, которые будут заниматься охотой за сверхновыми звёздами. Это станет возможным благодаря созданной компанией «Геоскан» сети наземных станций, покрывающих практически всю территорию России.

Примите к сведению; Эта информация является необработанным контентом, полученным непосредственно от источника информации. Она представляет собой точный отчет о том, что утверждает источник, и не обязательно отражает позицию MIL-OSI или ее клиентов.

.